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Abstract

For a second order nonautonomous singularly perturbed ordinary differential

equation with Neumann boundary conditions, the existence of single transition

layer solutions is proved by using the method of Liapunov-Schmidt. The

method also gives the stability of these solutions as an equilibrium point of a

parabolic equation. -, . I .

• 3

- 4

4'



1. Introduction

For e > 0 a small parameter, we consider the following parabolic

er' z~tion

(1.1 ~2 iiI+ f(u,x) -< x < 1, t ) 0

where ii - au/ot, u' = au/ax and impose the following boundary conditions

(1.2) u'(-l,t) - u'(l't) - 0

The function f will satisfy the following assumptions:

(A-i) f :R x [-1,1] -R is a C*-function of (u,x) with f (0,x) =0,

f(l,x) = 0

(A-2) There is a positive constant 8 such that

fU(0,x), fu(l,x) 4 -302 for x C- [-1,11

(A-3) Let J(x) - f' f(u,x)du, x E -1lJ Then J(O) -0,

d
- J(x)I 0 0 and

Jf(vo)dv < 0 for u e (0,I).

An example of a function f satisfying (A-1) - (A-3) is the cubic

(1.3) f(u,x) - u(1 - u)(u - a(x))

where

(1.4) a(O) Y4 a a'(0) 0 0, 0 < a(x) < I for x e -I1

We intend to discuss the existence of equilibrium solutions of (1.1), (1.2)

with a single transition layer at x -0; that is, those solutions which, as

IV
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E - 0, converge to zero (resp., one) uniformly on any compact subset of 1-1,0)

and converge to one (resp., zero) uniformly on any compact set of (0,1]. We

also discuss the stability properties of such solutions.

In fact, we prove the following theorem.

Theorem 1.1. (i) There is an co > 0 and two single transition layer solutions

u1(x,c), j - 0,1, 0 < E 4 co, such that, for any 6 > 0,

lim u.(x,c) = j uniformly on [-1,-B],
--0

u, (x,e) is asymptotically stable if

(1.5) (-l)Ju'(o,)J '(o)> 0

and unstale with the dimension of the unstable manifold equal to one if

(-I)Ju!(O,E)J (0) < 0.

Before describing the method of proof, let us first emphasize that this

result is certainly not surprising and is probably known to some people. In

fact, the existence of equilibrium solutions of the above type follows from the

work of Fife [1976], Ito [1984], Mimura, Tabata and Hosono [1980]. The

method employed there is to reflect the solution through -1 and +1, solve two

distinct boundary value problems on the intervals [-2,0] and [0,21 and then use

the boundary condition at zero to match the derivatives of the solutions.

For the case of the cubic (1.3), (1.4), Angenent, Mallet-Paret and Peletier

[1987] have obtained the stability condition (1.5). They obtained existence using

a comparison principle and results of Matano [10] on existence of stable

solutions. Some of the techniques used there are of assistance to us in discussing
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all solutions for the general case. One could also obtain the stability properties

of the solutions by using the method of Fujii and Nisihura [1985] involving a

singular limit eigenvalue problem.

The primary objective of this paper is to prove this theorem by using a

method which will yield the existence and stability at the same time. More

specifically, we begin with a smooth approximate equilibrium solution U(x,() of

the equation which exhibits a transition layer at x - 0 and then consider the

dynamics of the flow in a neighborhood of this approximate solution. The

variational equation near this approximate solution has the form

(1.6) u t = reu + G(E) + F(u,E)

where

(1.7) reu - 2u" + fu(U(x,(),x)u

(1.8) G(c)(x) -2U (x,E) + f(U(x,(),x)

(1.9) F(u,e) = f(U(x,e) + u,x) - f(U(x,e),x) - fu(U(x,E),x)u

The first step in any analysis of Equation (1.6) must involve an

understanding of the operator ZE : C2[-I,I] - C[-1,1] where C[-I,l] is the

space of C2-functions satisfying the boundary conditions (1.2) with II2,E =

sup,[ If(x) I + E Iw'(X)I + 2 [1"(x)I]. By using a Prufer transformation and

analyzing the behavior of the corresponding angle, we show there is exactly one

cigenvalue XI(e) of ZE which approaches zero as c - 0 and X(0) is

proportional to J (0). Furthermore, there is an co > 0, v > 0 such that the

remaining eigenvalues are ( -v for 0 < e ( co. The use of the Prufer

transformation in the study of stability of solutions of parabolic equations has

been used previously by Fusco and Hale [1985], Hale and Rocha [1985], Jones

(19841, and Rocha [1985], [1986].

, . ,-%' - - , ,- . . , .. ,
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After obtaining this information about ZE, two approaches naturally

suggest themselves. One is to use a center manifold theorem to reduce the

dynamics near the approximate solution to a one dimensional problem. The

other is to use the method of Liapunov-Schmidt to obtain a one dimensional

bifurcation function whose zeros determine the equilibrium solutions. In some

situations for which it is known that both of these methods can be applied, the

flow of the vector field defined by the bifurcation function is equivalent to the

flow on the center manifold (see, for example, Chow and Hale [1982]).

In this paper, we consider the method of Liapunov-Schmidt for the

existence of the equilibrium solutions. The stability properties of the solutions

are obtained by discussing the eigenvalues of the linear variational equation

directly. The existence of the center manifold and its relationship to the

bifurcation function will appear in a later publication.

To apply the method of Liapunov-Schmidt, the accuracy of the initial

approximation U(x,e) plays a crucial role. To see this, let Tl(x,E) be an

eigenfunction of ZE corresponding to Xl(e), and consider the equation for

equilibrium solutions

reu + G(e) + F(u,E) = 0.

If u = ay I + v where f 1 w1(x,c)v(x)dx = 0 and a is a scalar, then the

method of Liapunov-Schmidt yields a function v*(oc) defined for ,e small,

v*(0,0) - 0. Once v*(x,E) is known, the bifurcation function is given by

B(cx,) = X(E) + I Y1(xxf)[G(E)(x) + F( (xE)+ dx/I ) '
-1 L

The desired transition layer solutions are in one-to-one correspondence with the

zeros of B(c4E).

4.
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The Taylor series for B(ac,) will have the form

B(a€,) = 1(e) + 'y(E)a + 0(a2)

as c - 0. The Taylor series of the terms 0(E), 7(e) in c depend very

strongly upon the initial approximation U(x,c) to the equilibrium solution of

(1.1), (1.2); that is, upon the properties of the function G(E) in (1.8). More

specifically, suppose G(c) is only O(E) as c -. 0 and

J , ( x ' c)G ( e )( x ) d x = 00c + O(E) as E - 0

with 130 0. The function v*(e) then will satisfy v*(mf) - O(e + a 2 ) as

,a - 0 and

B(a ,) = [0oc + o(E)] + [7o + o(E)Ja + O(a2)

where 7o is determined from the first eigenvalue of VE and the 0(c)

term in v*(0,e). In this case, the equation B(cte) = 0 will not have a

solution a'(E) which vanishes when E - 0. Thus, there is no equilibrium

solution of (1.1), (1.2) which is a perturbation of U(x,c) in the direction of

the eigenfunction y1 (x,E).

If one wants to obtain existence of the equilibrium solutin (as well as its

stability) by perturbing an approximation solution in the direction of the

eigenf unction if (x,t), then the above reasoning implies that the initial

approximation must be more accurate. If we suppose that U(x,E) is such that
G(c) is O(E2 ) as c -- 0, then v*(a,() _ O(E2 + a2 ) and the bifurcation

function B(cE) has 0(f) - 0(E0) and 7(E) - 70 (f) + O(E2 ) as c -- 0, 7(0)

0 0. This implies that, if B(ae) - 0, then a = 0(t) as e -4 0, and there is

an exact equilibrium solution near U(x,E) which is a perturbation in the

direction of the first eigenfunction y,(x,,E).

%% 4 s 4
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Sections 2,3, and 4 are devoted respectively to the discussion of the

approximate solution, the linear operator f6 and the application of the method

of Liapunov-Schmidt.

It is possible that the function J(x) in (A-3) could have more than one

zero. In this case, solutions with several transition layers may occur, a situation

which is discussed in Section 5. It is also possible that the function f(u,x)

does not have zeros which are constant in x as in hypothesis (A-I). The

modifications that are necessary to handle this case are discussed in Section 6.
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2. An Approximation

In this section, we describe a way to obtain an approximation to the

equilibrium solutions of (1.1), (1.2) with a single transition layer under the

hypotheses (A-I) - (A-3). If u(x;E) is an equilibrium solution and we let

z(t,E) = u(ct,e), "." = d/dt, then

(2.1) Y + f(zet) = 0

on -1/E < t < '/E with the boundatry conditions z = 0 at t = ±-1. To

obtain the approximate solution, we let

(2.2) z(t,E) - Zo(t) + Ez1(t) + O(E 2)

and formally equate powers of e in (2.1), then

(2.3) Yo + f(zo,0) = 0

(2.4) F' + fU(zo(t),0)z1 + f.(Zo(t)),o)t = 0

for t 4E R The boundary conditions are

(2.5) zo(-) = 0, Zo(+*) = 1,

(2.6) z(t*) = 0 .

The function zo will give a solution with transition from 0 to 1. For the case

of a transition from 1 to 0, one imposes the conditions zo(-) = 1, Zo(+*) = 0

instead of (2.5).

The conditions (A-I) and (A-2) imply that Equation (2.3) has equilibrium

points (0,0), (1,0) in the (zozo) phase plane which are hyperbolic saddle

points. Furthermore, Condtion (A-3) implies that there is a heteroclinic orbit

(Zo(t,-y), Zo(t,7)) which connects the equilibrium point (0,0) to the equilibrium

point (1,0). The constant y - (0,1) is the initial value of zo(t;y) : that is,

zo(0,7) - 7, and uniquely specifies the heteroclinic orbit. Moreover, there is a

constant ko > 0 such that

.!A.



(2.7) ~ max ( Izo(t,7/) - I, izo~,Y)I1) 4 ( -'t t ) 0
(.)max ( Izoot,0), lio(t,Y)I1) 4 ko0e20t, t (0.

With this choice of zo(t,7/), one can now begin to discuss a solution z1(t)

of (2.4) which satisfies the boundary condition (2.6). The linear equation

F1+ Qf(t)0)z1 - 0

has the property that the only bounded solution on A is a multiple of i 0(t,7)

Using a well known theory based on exponential dichotomy and the Fredholm

alternative (see, for example, Chow and Hale, [1982, Sec. 11.3], Hale [1984, pp.

123 ]), the equation (2.4) has a solution which is bounded on A~ if and only

if

(2.8) J [(t7)Zo(t,7),o)tdt M 0.

Therefore, condition (2.8) must be satisfied in order to obtain a solution of (2.4)

satisfying (2.6).

We now show that there is a unique C (0,1) such that (2.8) is satisfied.

To see this, let

(Jo) io(t,7)fzo(ty),0)tdt QJ ( 0J2F(v)F dv)du

in which F(u) - f o f(sO)ds. Since

dy

it follows that C0 () is strictly monotone. On the other hand, F() -0(2) as

-7 0 and F(7I) - O((-/-1) 2 ) as 7y 1. Therefore, ICo(Y)I as 71 0 or

1 and there is a unique 7 in (0.,such that (2.8) holds.

Let us choose 7/ so that (2.8) holds and now designate zo(t.,7) by zo(t).

.9,,
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Then there is a solution of (2.4) bounded on R In fact, there is a solution

which is a continuous linear functional in the uniform topology on A~ of the

forcing function f x(z 0(t),0)t i n (2.4). Since zo(t) satisfies the estimate (2.7)

and the forcing term satisfies

it follows that z1(t) satisfies the estimate

(2.9) max ( jz1(t)l IjIil(t)j 9 k~e-BtI t e: A

for some positive constant k1.

Now, let ;O(x), C+(x) be Ce-cutoff functions satisfying

fII 4x '/

;Ox 0 X #1/

t o x E [-1,01
t~x) I- ;O(x) x e 10, 1.

and let

(2.10) Z(t,E) -z 0(t) + EZ1 (t)

(2.11) U(x,E) ;o~(x)Z (x/(,() + ()

The function U will be our approximation to the equilibrium solution of

(1.1), (1.2). If we make the transformation of variables,

(2.12) u r-- U (X, f) + u

in (1.1), then the new function u must satisfy the differential equation

(2.13) - . ru + %E~) + F(u,e)
8it



and the boundary conditions (1.2), where

(2.14) reU _ C2U,, +f (U(x,c),x)u

(2.15) G()(x - U" (x,') + f(U(x,(),x)

(2.16) F(u,e)(x) - f(U(xE) + u,x) - f(U(x,c),x) - f,(U(X,E),X)U.

As is seen f rom (2.15), G(c) measures how accurately U(x,E) approximates the

equilibrium solution of (1.1), (1.2). The following lemma partly justifies the

expansion in (2.2).

Lemma 2.1. sup IG(,E)(x)I _ 0(E 2) a s iE -0.
XE(-11

Proof. Let us first write G(E)(x) explicitly:

G(E)(x) - U"(X,E) + f(U(X,,),x)

- O(X)[Y0(X/C) + CY1 (X/E)I

+ 2c;(x)[z0 (x/c) + ci,(x/c)J

+ E2 ,e(x)[zO(x/C) + CZ1 (x/E)] + E2 ;1'(X)

+ f(;0(x)[z0(x/E) + (z1(x/C)] + r;+(X),X).

From the choice of the cut-off functions ;0 ;+, one easily obtains the

following estimates:

a) lxi /

IG(c)(x)I i f(;+(x),x)l - 0

b).1/ X -1/

IG(c)(x)I (SUP (lYo(X/E)I + (I~1(X/E)I; X C (-1/2, -1/4])

+ 2E c l sup 1 (SP Izo(X/C) + IE/i I(X/E) 1; X C- [-'/2, -'/4])

+ 12 "g~ sup (oX/E) I + (I ZI(X/E)I x; X CI[1/2, -1/4])

(c e-0/2(
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in which c is a positive constant independent of x and c > 0.

C) 1/4 ( X ' /2

IG(E)(x)I 4 sup (oX/f) I + C I Y(X/E) 1; X C [1/4, 1/2])

+ 2ej~ Ia011 sup (io(x/E)j + E Iz (X/E) 1; X C [1/4, '/21)

+ ( 2 1tilj 0 SUP (ox/) + CI ZI(X/EC)1; X E [1/4, 1/2])

d) lx 1 /

G(e)(x) = f(z0 (x/E) + EZ1 (X/C),X) -f(z 0(x/(), 0)

-C[fU(ZO(X/IE),0)Zj(X/() + fx(zo(X/C),0)X/E]

By applying the mean value theorem, one finds a e - G(x,e), 0 9 (x,c) ~I

such that, for lxi 4

(2.17) G(,E)(x) - tfujz0 (x/e) + ejZ1(X/E),eX)[Cz 1 (X/()]2

+ f U(z0 (x/C) + e~z1(x/E),ex)xz 1 (x/E)E

+ *1-f.(z(X/C) + 6eCZ(X/E),qX)X 2

-
2  f UU(ZO(x/E) + ecz 1(x/E),ex)z1 (x/E) 2

+ fu(z 0 (X/C) + GEz 1(X/IE),eX) 1L Z1(X/C)

+ 12 f,.(ZO(X/C) + eCz 1(X/(),6X)(IE) 2J

Since zo(t), z1(t) satisfy the estimates (2.7), (2.9) and fxx(0,x) 0 .(x)

the f unction

I f (z 0 (t) + CeZ 1(t), get)Z1(t)
2

+ f.(Z 0 (t) + EOZ 1(t), 9et)tz1(t)

+ '?-f,.(ZO(t) + COz 1(t), G~t)t 2

is bounded on A~ as a function of t, which together with (2.17) implies

suR,,IG((x~j( C (2.
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Since lim C 2 e"1/2E 0, the estimates in a) - d) imply
E to

sup IG(e)(x)I CC2  as e 1 0
Ixi (1

for some positive constant C. The proof is complete.

"

S'
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3. Properties of the linear operator

In this section, we intend to discuss the spectral properties of the linear

operator V in (2.14). Let

X = (u E C2[-1,1]; u'(-l) _ 0 = u1())

and
I U 120= It0 + IU 'o + (21 Uio for u C X.

We consider 26 : X Y and prove the following

Theorem 3.1. There is an o > 0 such that the following assertions are valid.

(i) The principal eigenvalue X)(E) of t6 is simple and approaches zero as

iE 1~ 0.

(ii) If O(x,c) is any eigenfunction corresponding to XI(e), 0 < e co , then

there is a constant k 2 > 0, such that

[0(x,E)1 4 k2 1( 0,e)l e2013xi/e for lxI (1

(iii) There is a go > 0 such that, the second eigenvalue X2 ( ) of Z.E

satisfies X2(e) ( -p.0  for 0 < E ( c o.

To prove this result, we first observe that the eigenvalue problem

(3.1) rEu - XU

is equivalent to the system of first order equations

ct E u x E [-1,1]

(3.2) (VI M -[f,(U(x;),x) - IN

v(-I) . 0 = v(J).
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In terms of the fast variable t - x/c, (3.2)k is written as

r - v t e [-ib,1 /E]

(3.3)x k - -[f(U(t,E),Et) - k]u

u(-'/() - 0 - u(/E)

in which U(t,) - U(et,E). It is useful to introduce polar coordinates (r,e)

defined by u - r cos e, v - -r sin 8, in (3.2)k and (3.3) X, and determine the

properties of the eigenvalues of ZE from the properties of the angle 8.

The equations for (r,O) are given by

a) cr' - -r[I + I - fu(U(x,e),x)] sin e cos 6
(3.4) x b) EB' - [f,(U(x,c),x) - k] cos2 0 + sin2 e

and
a) r - -[1 + k - fu(U2(t,c), et)] sin 8 cos e

(3.5) X
b) B - [fu(U (tE),Et) - )] cos2 O + sin2 O.

Let 0:(x,c, X) denote a unique solution of (3.4-b) x with 0(l,E,.) = o.

Then it easily follows that X is an eigenvalue of rE if and only if

0(laX =- 0(mod.nr)(or +-,,)--0(mod.n7)).

Moreover, one can verify that 0(I,E,X) (resp. 0+(-1,E,,)) is a strictly

decreasing (resp. increasing) function of k for each fixed E > 0 and

lim .(1,E,,) , ,, iim B(IEM) - -n/2. Therefore, the principal eigenvalue X)(e)

of Z'r is characterized by:

B(l,E, 1 (E)) - 0.

There is a constant 6 > 0 such that (!fU(ux) - f.(o,x)I, IfQ(l + u,x)

-f(l,x)) 4 132/2 for Jul 4 6 and from (2.7), (2.9) and (2.11), it follows that

there exists a constant k> 0 such that

* .\X~4 ~iQ V.' '.fr ''~|
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1 U(x,)1 k2(l+() eBiS x l/2 for x ( 0

IU(x,c) - I ( k 2(l+) e " x/3 2 for x ) 0.

From the condition (A-2) and the estimates above, it follows that, for any o,

To satisfying the relation

(3.6) k2(l+" o ) e a0/2 <

and for any to ) i-o, 0 < E ( To, one has

(3.7) f.(U(x,c),x) - X ( -22 for JXI) ( to , JXJ < 02/2.

Now let e±(x,E,X) be solutions of the equation

[fU(U(x,E),x) - X] cos2 e + sin 2 e _ 0

for Ixi I )to, XIl ( 82/2, satisfying

.'t/2 < e.(x,,X) 4 -8o

eo 4 e+(x,cj) < ff/2

in which 60 C (0 ,11/ 2) is the unique solution of

tan 2 Go = 2132.

Lemma 3.2. Suppose TO, To satisfy (3.6). Then there exist constants El, 0 < (I

(0, k3 > 0, k4 > 0, 3 > 0 and solutions U'±(x,c,X) of (3.4-b) x such that, for

C (OElJ, to 1 F-, and X C [-82/2, 02/2], the following properties hold:

(i) Ij+(x,t,X) - O.(xc,X), ( k3 C, for lxi ( Et o

T.(x,iEX) - e_(x,c,X)l ( k3 ', for lxi ( Eto

(ii) If e(x,c,k) is the solution of (3.4-b) x with initial value e(-lEX) (resp.

O(+1,EX)) satisfying

e(-l,,X) E (o+(-l,E,X) + k3 ' + (n-l)7to+(-l,E,) - k3 f + nft)

(resp. C() 6 (_(lEX) + k3E + nYT, .(I,,X) - k3 c + (n+l)nr))
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for some integer n, then the following estimate is valid:

1e(x,ck)- .(xE,) - nnIf 4 k4 e
-2(x+1)/E for x E [-l,-Eto]

(resp. 1B(x,t,k) - U+(x,E,X) - nni  k4e211(x-1)/t for x C [tool])

(iii) If 9(x,c,k) is the solution of (3.4-b)k with the initial value

(-(t ,E ) (resp. 6(ctoSE)) at x - -(t o (resp. x - ct o) satisfying

(-Cto,(,x) e (.(-(t 0 ,,X) + k 3  + n7T, .(-ct 0to,,X) - k 3  + (n+l)n)

(resp. O(ttof,k) E (O+(tt,,X) + k 0 + (n-l)nr, O+(tt,0 ,x) - k3  + nnl))

for some integer n, then the following estimate is valid;

16(x,0) - 9+(x,(,k) - n k4e20(x+Eto)/E, for x C [-l,-to],

(resp. ie(x,c,k) - U(x,,k)) ° nl k ,-20(x-fo)/(, for x E [tosl])

Proof of Lemma 3.2. To prove these results it is convenient to rewrite the

equation (3.4-b)k in terms of coordinates around 8,(x,c,)). For this purpose, let

us introduce new coordinates (UV) in (3.2)k by

where A - A(x,t,)) - [-fu(U(x,1),x) + k]) for 1x1 ;0 cto. One should notice

that A(x,,k)) % 2 holds for lxi 1 Eto, aid hence the change of

coordinates makes sense for lxi 0 cto. Then introduce polar coordinates (p,O)

by i = p cos 0, V - -p sin 0. The Equations for (p,O) are given by

a) sp' - -A(x,tk)p cos 20 - c(A'/2A)p(l - sin 201
(3.8) b) t' a A (x, , ) sin 20 - (A /2A ) cos 20

0 - 8_(x,t,X) and B - 8+(x,c,X) are transformed into 0 - -R/2 and 0 - 0,

respectively. The Neumann data 0 a 0(mod.n) corresponds to 0 - /4 (mod.n).

The equation (3.8-b)k hAs positively (resp. negatively) invariant strips around

jjjl1, 1, ' 1W . .1 _.11 . W.r%.,w

(l hill* ~ ,V ~ ~ *** .N ~~V I
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= T/ + inn, m 6 Z (resp. M I inT) for Jxi C Eto . The width of these

strips is given by:

tan'I(( su? [A I(x,e,k,)/2A(x,eX)2[ '3(k
I I Eto

for some positive constant k3. Since A(x,e,X) ; -2B and 8 and

coordinates are related by

tan 8/ tan (0 + n/ 4 ) - A(x,E,X), jxj ;t o

there exists a positive constant k., such that the interval

(min + e_(x,e,k) - k3e, mIn + e.(x,e,X) + k3 C)

is positively invariant for the equation (3.4-b)X and the interval

(mIT + e+(x,e,X) - k3 e, mIT + e+(x,E,X) + k3 C)

is negatively invariant for the equation (3.4-b)x for any integer m. Now it is

easy to find the solutions '+(x,e,X) of (3.4-b), which satisfy the property (i)

in the lemma. For example, U.(x,e,X) is defined as the unique solution of

(3.4-b) X with initial value =(-l,E,) = e_(-l,e,x) for x E [-l,-cto] and as the

unique solution of (3.4-b)k with initial value U_(+eto,e,k) W e.(+CtoE,X), for

x E [+tolj. The function 9+ is defined in the similar way. This

completes the proof of Part (i).

Now considering the difference O(x,e,X) - U(x,e,x) and applying the mean

value theorem, the equation (3.4-b)x yields [8(x,c,)) - I(x,e,X) ( k4 e -21(x+1)/C

for x 6 [-l,-cto]. All other statements in (ii), (iii) follow using the same type

of arguments. The proof of Lemma 3.2 is complete.

Returning to the proof of Theorem 3.1, we examine the behavior of

0,(x,e,X) over the interval - to, to]. Let us concentrate our attention on

O ,(x,e,O) for the moment. At this stage, it is convenient to use the equation

(3.5-b) o in terms of the fast variable t - x/E:

V

A 9
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(3.9) = fu(Z(tE),Et) cos 2 9 + sin 2 e, t C [-1/4(, 1/4C].

The solutions of t his equation are compared to those of

(3.10) 0 - fu(Zo(t),0) cos2 0 + sin28, t e (-a,.).

Let us denote by 0(t) the solution of (3.10) which corresponds to the solution

T(z 0(t), '0 (t)) of (3.3)0 with e - 0. We show that et(±ct o,E,0) and 9(±to) can

be made arbitrarily close by choosing e > 0 small. By definition,

tane(-Etove,0) = -[-fu(Z(-cto,c), -eto)] . On the other hand, tan'(-to)

-'o(-to)/Zo(-to). One should notice that both tan e_(-Et o,c,0) and tanI(-t o)

have one and the same sign (negative in this .ase). Hence, we estimate

(3.11) tan2 e(-Et o,,O) - tan 2U(-to)

-f,(Z'..to,E), -Eto) + [f(zo(-to),0)] 2/ [ J f(u,0)du]

By employing the expansion f(u,0) - fu(0,0)u + O(1u j2 near u - 0, the

second on the right of (3.11) reduces to fu(0,0) + O(Izo(-to)l). Hence, we can

continue formula (3.11) as:

= -ft of.(O,x*) + fuu(U*,-'to)[-Z(-to,),

where x* : [-1,1] and u* - (0,1) are appropriate values. This gives:

Ie.(-(t¢E,0) - (-to) 1 C[ct o + e-2Btol

for some consant C > 0. The same type of arguments gives:

l8+((to0,,0) - 1(to)I C(Et o + e-26to).

Combining these estimates with Lemma 3.2 (i), (ii), one obtains

( 3 .1 2 ) f O ( - t , , 0 ) - U ( -t ) l 4 C ( t ° + e '2 6 to ) + k 3 E + k 4 e =2 ( 1 't o ) / E

jI+(ct o,c,0) - U(to)l C(gt o + e-20 to) + k3 E + k 4 e2 Et0-l/E
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if GDt(t,E) a~E,,) then 6~tE)) are solutions of (3.5-b) 0  with

-0. Since the right hand side of (3.5-b)x is bounded and solutions

of differential equations depend continuously on initial data and parameters

involved, relation (3.12) implies that

[e(O,c,0) -9(0)1 ( Ct0 (E to + e -2t 0 + k 3E + k~e-2](1-Eto)/E)

a I+ (OE,O) - (0)l 4 Ct0 (Et0 + C -28t o + k 3e + k4e-21(1Eto)/E).

The positive constant C does not depend on to, f so long as to > t0

0 < To i. For any X~ C (0,02/2], one has

[6(O,E,O) - (0,E,O) > G-O(E) = e6(OE))
(3.14)+ le+(o,E,0) FJ O,C,0) < g(,EX

* and t O(O,C,0) - (0,E,0) < 9O(O,(,-)X) - e9(0,(,-X)
(3.14)_

8+(0,E,O) - S+(O,C,O) > 8+(0,C,-L) - 6+(0,(,-)).

Now choose to t0 (c)- as cE-0 so that t02(c)- 0 as e -0. Then

relation (3.13) implies that: 0e(O,E,O) - e+(o,E,o)I Ge(,EO) - 8+(0,e,0)I 0 as

cE 0. Therefore, (3.14). imply that, for any X. C (002 /21, there exists an

eX)> 0 such that

(315 8-(0,EX) < B0010) for IE C (0,10M).
e-(0,E,4) >0+1(,N

The inequalities in (3.15) imply that lim 11(c) - 0. For, if )X1(c) ?, 6 > 0

f or iE > 0 small, then _(0,E,X1 (E)) ( 8_(0,c,6) < e+(0,e,B) 4 ~0E) 1 ) for

t C- (0,iE0(6)J which is a contradiction, since XI(c) being the first eigenvalue

implies 0,E(O(XE) - B+(0,iE,X,(c)). This proves part (i) of Theorem 3.1.
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Part (ii) of Theorem 3.1 is easily obtained from (3.4-a)() and Lemma

3.2.

In order to prove part (iii), we need the following elementary lemma.

Lemma 3.3. Let TO, To  be fixed so that the condition (3.6) is satisfied. Then

the following estimate is valid.

0 ( e_(-EtoEXI(E)-it) - _(-Eto,,(E)) I/(tan 2 0 + 1)

0 (EtoEX(E)) - e+(Eto,c,x 1 (c)-it) i I/(tan Oo + I)

for c e (0,'o], t o ) to and Ig e [0,02/4].

Proof. Since - t/2 < - 4 -8o < 0 and

tan .(-EtoEX1 (E)-M) - tan e_(-ctoE,X(e)) = g,

an application of the mean value theorem implies

O.(-(to,(,Xj(c)-It) - O.(-Eto,iE,Xc()) ( g/(l + tan 2 o).

, The statement for + follows from the same type of arguments.

Now consider the equation

(3.16) (e' - [fu(U(x,(),x) - X(C) + ;L] Cos 2 e + sin 2 8

for is C [OB2/41. Let us denote by e,(x,c) the solution of (3.16) with

* 0. Hence, e0 (x,E) corresponds to the first cigenvalue of VE. We shall give

an lower bound for ju for which 0eu(l,e) - 1 holds. For sufficiently small

E > 0, say, E C (0,ol, for some E > 0, 111(() - ILI < 32/2 is satisfied for

;L E [0,32/4] and the coefficient of cos 2 9 in the right side of (3.16) satisfies

(3.7). Therefore Lemma 3.2 applies. In order to have 0A(l,E) = 77, it is

necessary that:

0A(ftol) > O+(ct o ,c,XI(c) - I) - k3 c + 7.
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On the other hand, Lemma 3.2 implies

eA(-Etoe) < e_(-Ct 0,E,X(e) - ) + 2k 3 E.

Therefore, the inequality

(3.17) etL(etoe) - 6 (-(to,E) > e+(Et 0 ,e,x 1(e)-L) - e(-Et 0 ,e,x(t)-g) - 3k 3 E + R

must be satisfied. Since ;L > 0, EO is estimated as

Egg ( [fu(U(x,E),x)-X(C)] cos 26I + sin 2  + t.

Comparing the equation with the equation for %;

(o = [fU(U(x,IE),x)-X(f)] cos 2 e 0 + sin2
90

one can easily verify the existence of a constant k > 0 such that

(3.18) C(89- o)' k(89 - eo) + .

Solving the differential inequality (3.18) over the interv,' [-Et 0 Et0 ], one

obtains

(3.19) e/M(Etoe) - oM(-eto,E)

< e( eto,) - 80 (-(t 0 '() + [eU(.Et 0 ,e) - e0 (-et o ,E) + 2tog]Ce2b.

Applying Lemma 3.2 again, one easily finds that:

O(-fto,f) - O0(-Et o,() < e.(-t o,exA(e)-u) - e(-et 0 ,e,Xj(E)) + 2k3s

and further applying Lemma 3.3,
(3.20) eg(-cto,e) - eo(-et o,E) < g/(l + tan 2Oo) + 2ks€.

Lemma 3.2 also implies that

(3.21) eo(et o,e) - e0(-Ct 0 ',) < e+(ct0 ,e,X(c)) - e_(-et 0 ,c,Xj(c)) + 2k3c.

Substituting (3.20) and (3.21) into (3.19), one obtains

(3.22) ea(Eto,E) - eg(-Et 0 ,E)

< O+(et o,c,Xj(c)) - O.(-Et 0 ,e,X(e)) + 2k3c

+ [/(1 + tan 2
00) + 2kse + 2toieikto.

Combining (3.17) and (3.22) and using Lemma 3.3 again one obtains,
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(3.23) 71 < 0(u) + 2ks(e 2 to + 5)(

in which 0(g) = [(2 + e2kto)/(l + tan 2eo) + 2tOe2toe g. Hence, for e E (0,co],

with Eo > 0 sufficiently small, (3.23) implies 17/2 < O(g). There are two

cases:

Case 1) 4(132/4) < R/2.

This means: X2() = X() - i < y(E) - 132/4 < _-32/a for E e (0,eo].

Case 2). There exists a unique go C (0,02/1 such that

0(2u o ) = i/2.

This means X2(e) = Xj(E) - g < XI(E) - 2to < -go for E E (0,eo]. This

completes the proof of part (iii) of theorem 3.1.

We shall refine the estimate on E(E) as e - 0, in the following

Lemma 3.4. The first eigenvalue Xz(e) of Z satisfies

XI(e) = Kle + o(c) as E - 0

where K1 = "J'(0)/f4 io(t)2dt and lim o(E)/E = 0.

Proof. Let 01(xe) be a principal eigenfunction of ZE normalized so that

01(0,c) = Zo(0). This normalization is always possible since 01(x,E) is of

constant sign on [-1,1] and io(0) 0 0.

If 01 (t,E) = 01 (Et,E), then 01 satisfies the equation

(3.24) ii + fu(ZJ (t,E),et)O = Xz()O.

By Theorem 3.1 (ii) and the normalization above, I?1(,E)Io is bounded for

E6E (0,6o, as well as Ifu( (.,),Et) 1o and kj(c). The equation (3.24) implies

that 1( .,E)J 0  is bounded. The interpolation inequality Iu'l Ia lul +

(2/0r) u ho for any a > 0 implies that i(.-e)o is bounded. Applying

"'-V. ~& & W. ''
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the Ascoli-Arzela's theorem and the equation (3.24) repeatedly, one finds that

().j(e),0( .,E)) is precompact in R x C20 JR).

On the other hand, the proof of Theorem 3.) (i) shows that (,) 1 ()

U(O) as Lc 0 and hence

(M(,C), W(OE) (zN(0), io(0)) as e6 0.

Since the solution 0(t,E) depends continuously on the initial data ($(,),

0(0,e)) and the parameter e, the only possible limit of ?i( -,e) as c - 0 in

C,,,(R) isid)

Now multiply (3.24) by iojt) and integrate over the interval [-1/4(,/4( j

by parts to obtain

= [jo 0 0(,E) - 0?51'KI

+ AE[ + f,(Z(t,c),e t)i 0 ] (t,E )dt

in which U t,6 = ZOtE for It ( KE, is used.

Substituting z0 =o -f,,(z0 (t), 0)i 0(t), one obtains

-~ p( + ( [f,(Z(t,c),et) - f,,(z0(t),0)1z0(t); (t,iE)dt.

The first term on the right side is obtained from the decay estimates in

Theorem 3.1 (ii) and in (2.7). By the Lebesgue's dominated convergence theorem
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0()

-J[f,,,(ZO(t),o)z 1 (t) + f.(z0 (t),O)t~i0 (t)2dt.

The last term is simplified by integration by parts:

Jfuu(ZO(t),O)z1 (t)iO(t)2 dt + J f(ZO(t),O)ti (t)2d

- f(ZO(t),O)[Z1 (t)YO(t) + ijti± )d

-Jf,(zO(t),O)i 0(t)dt - fx(zO(t),O)tYO(t)dt

f x(zo(t),O)i O(t)d t

- [fu(z 0 ,o)zj(t) + f,(z0(t),O)tIY0(t)dt

+ Jz Y1(t)f (z0 (t),O)dt

M f x~,)du + - 1(t + fu(zo(t),O)z1 + fx(z0(t),O)t~f(z 0 (t),O)dt

= 1 J(0).

This completes the proof of Lemma 3.4.
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4. The method of Liapunov-Schniidt.

In this section, we use the method of Liapunov-Schmidt to obtain the

existence of equilibrium solutions of (2.13); the solutions of

(4.1) tEu + G(iE) + F(u,e) - 0

with G(e), F(u,e) defined in (2.15), (2.16).

Let E :Y -Y be a continuous projection onto the span of 01 ( -,e), the

principal cigenfunction of VE normalized so that 01(0,E) - io(0). E is given

explicitly by:

(4.2) Eu <u)11E4( E/IIi ,E)2
L (_ 1,1)

in which < u,0 1 (-,E)> = P'1 u(x)O1 (x,c)dx. Let Yand X, be the null spaces

of E in Y and X, respectively. Associated with the projection E, one has

the following decompositions

(4.3) Y= [01(E)) 'sY1 X [01(c)J 0 X1.

One should notice that Y1 = 2(fl) = ZX, and that VE : X1-. Y I is a

one-to-one mapping. In accordance with the decompositions in (4.3), the problem

(4.1) is recast as t(i) tEv + (I-E)G(E) + (I-E)F(aO1 (e) + v,c) = 0
(4.4)

1(ii) )(e 1 () + EG(e) + EF(aol(c) + v,e) = 0

where u was replaced by u - aO1(x;c) + v, with or C R v EX 1.

Lemma 4.1. There exists an co > 0 such that, for e C (O,c0] and p Ce 1

the equation 'E v - p has a unique solution v - v(p) C X V Moreover, there

exists a constant k > 0 such that

(4.5) v(P) 12 ,( 4 k~pl0 , forE e GOE] pcl P CY

-- . MOA.. f r ~~ ~ ~ ,S.* ~ ~ ~ M ~WO' 'e 11 1
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Proof. Take an co > 0 so that Theorem 3.1 is valid for e E (0,e 0 ]. The

first part is a consequence of the fact that V : X - YI is bijective. As for

the estimate (4.5), Theorem 3.1 (iii) implies that I(Z Y1IIB(Y ,y, 4 tY ) since

VE is self-adjoint; hence, Iv(p)Io 4 IPlo/Mo. Then, the equation ZEv = p

implies that g2Iv(p)"lo 4 Colpjo for some positive constant CO  which is

independent of e e (0,co]. Now, from the interpolation inequality

Iv lo 4 E I o + 2e'Ivlo for any i > 0,

one obtains the existence of a constant k > 0 for which the estimate (4.5) is

true. This completes the proof of the lemma.

Lemma 4.2. The equation (4,4) (i) is uniquely solved in v as a function v =

v*(,e) of (4xe) - R x R+ in a neighborhood of (ce) = (0,0), smooth in c,

and Iv*(CE)l 2 ,C = (a,2 + C2) as I"1 + E - 0.

Proof. The lemma is proved by a standard application of the contraction

maping principle.

Let T : YI x A x (0,( 0] - Yj be defined by

T(v,cxe) = KE(I-E)[G(c) + F(a¢ (c) + v,c)]

in which K E = - [6 IY1 ] and co is sufficiently small to permit the

application of Lemma 4.1 and Theorem 3.1. From Lemmas 2.1 and 4.1, we have

I(I-E)G(E) lo = 0(( 2) as e - 0.

From Lemma 4.1 and the definition of F(u,e) in (2.16), we also have

I(I-E)F(aO1(e) + v,E)lo - 0(10,1 + ilvIo)2

as aIVo- 0. Therefore, there are positive constants cokS such that, for

0 < 0, 1, IV 1 0 C o, I C1 4 c o
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(4.6) M"(v,,) 12,1 4 k5((2 + (1 + IvIo) 2)

and for IV 1o, V2j1o 4 CO,

(4.7) iT(v,',") - r(v2,,)1 2,, 4 k1(Mv 1J0 + Iv21o)IVI - v2 10

If Y,(r) a{v C Y1 ; Iv1o 4 r} for r > 0, then, replacing co, to by

smaller values, if necessary, one can find r > 0 so small that the following

inequalities are satisfied

(4.8) k(e2 + (c o + r) 2 ) < r and 2ksr < 1.

For such a choice of r as above, and a E I-coco], e E (0,eo] the mapping

'(.,o(, ) : Y,(r) -*Y,(r)

is a contraction mapping. Hence, the existence of the function v*(ce),

ar [-cocol, e 4 (0,eo], is ensured. The order estimate on iv*(,)12,, as

jal +e - 0 is obtained from (4.6). The proof is complete.

We are now in a position to state an existence theorem for equilibrium

solutins of (1.1), (1.2) with a single transition layer.

Theorem 4.3. If (A-1) - (A-2) and (A-3) are satisfied, then there is a family of

equilibrium solutions u+(x,f) of (1.1), (1.2) with the following properties.

(i) lim u+(x,E) = compact uniformly on [-1,0)

U compact uniformly on (0,1]

and
Iu+(.,) - U(.,E)1 2 , - O(c) as e - 0

(ii) If 21 X - Y is defined by Z v - 2v" + fu(u+(x,e),x)v, then the

principal eigenvalue ),(e) of ZS satisfies

X*(0) - Kle + o(E) as e - 0

and there exists a positive constant i o such that

- -| r I l. ,-
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X*(c) 4-g for E - (O,0 o]

where K1  is the constant defined in Lemma 3.4 and X*(c) is the second

eigenvalue of Z.

(iii) There exists a positive constant do independent of c C (O,co] such that

u+(x,E) is monotone increasing over the interval [-ed o ,ed o ].

Proof. Finding such a family of equilibrium solutons of (1.1), (1.2) is

equivalent to finding a family of solutions (o(E),v(c)) of the problem (4.1).

By Lemma 4.2, the later one is reduced to solving:

B(,c) - 0

where B(ac)O,(e) -- X(c)aOj(c) + E[G(c) + F(a01 (c) + v*(cr),e)]. From Lemmas

3.4, 4.2, it follows that

(4.9) B(ac) - T 0 ( 2 + 0(0 2 ) + (KI( + o(E))a + o(I)a2 + O(0 s)

in which T o  is given by:

W

(4.10) o- J o(t)['Ifu(Zo(t),O)Z1 (t) 2 + fu(Zo(t),O)tz1 (t)

+ .1 f (Zo(t),)t]dt/l± .,j2

and o(c 2 )/C 2 - 0 as e -. 0, o(l) -. 0 as t 0. By applying the implicit

function theorem to:

( 1 /c 2 )B(c&,c) = 0

one can show that there is a unique solution (*(E),E) of B(cE) - 0 for

jal < co , t C (0eA], which satisfies

(4.11) e(f) - (-ToK,)c + o(E) as E 0.

Therefore, (a(E),v((),),E) is a unique solution of (4.4) for lal 4 co,

C (0,IE0 1.

'Y, jO. r... '%N'i ? ' ( '..'.* e* 1 .'d ,. ,,.. -- -* F. % . -
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Now, our desired solution u+(x,E) is given by

(4.12) u+(x,IE) - U(x,E) + ct()O 1(x,() + v*(e*(E),E).

Since it follows that 101( .,E 12,E 4 k2 I o(O) I, 1 I(C) I - 0(E), and

I v*(a*(),E)12,, - O(E 2 ) from Theorem 3.1, Lemma 4.2, and the estimate given

above, one obtains

(4.13) 1u+(.,() - U(.,E)1 2E.C 0(E)

which, along with the construction of U(.,E), proves part (i).

In order to prove part (ii), one just follows the same procedure as in the

proof of Lemma 3.4 to obtain

li I*,(()/(J J 0(t) 2 dt = JIfUU(zo(t),O)j-1(t) + f"(Z0 (t)O)t]i 0 (t)2 dt

in which i1 (t) - (-To/Kl)-o(t) + z,(t). The subsequenct computations in the

proof of Lemma 3.4 is valid as well in the present situation, since i, satisfies

the non-homogeneous linear equation

zi + f.(Zo(t),O)i"1 + fx(Zo(t),O)t - 0.

Therefore, one can conclude:

lim X*(E)/E - K.
*o o

As for the existence of such a constant Io > 0 as to satisfy: X)() 4 -;Lo for

( E (0,( 0], one can follow the arguments which led us to Theorem 3.1 (iii).

This completes the proof of part (ii).

To prove part (iii), let us notice that, for lxI < /4

Eu.(X,E) - io(X//) + zl(x/1E) + e*()(x,)

+ c(dv*(e(),c)(x)/dx).

Since Ie(()01(.,() + v*(e((),() 2 ,( - 0(1), and io(t) > 0 for t C R, one can

choose do > 0 so that
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inf (io(t); ItJ ( do) > I c 1() + fd'(E)O1'(.,c) + Ev*(a*(c),c) lo

for E c (0,Eo] (by reducing co > 0, if necessary). For this choice of do,

u4.(x,) > 0 for Jxl Edo, E E (O,c0]. This completes the proof of Theorem

4.3.

Remark 4.4. We could construct another family of equilibrium solutions of

(1.1), (1.2) with a single transition layer, which, however, "jumps down" from 1

to 0 as x passes zero from left to right. We state this as

Corollary 4.5. If (A-1), (A-2) and (A-3) are satisfsied, then there is a family of

equilibrium solutions u(x,c), for E E (0,c 0 ], of (1.1), (1.2) with the following

properties.

(i) limu (x,E)- fl compact uniformly on [-1,0)
to compact uniformly on (0,1]

and

Iu_(-,E) - U.(-)12,( - 0(E) as - 0

(ii) If Z : X - Y is defined by ZJv = (2V" + fu(_(x,E),x)v, then the

first eigenvalue )X,(c) of Z1 satisfies

)X(c) = -KIIE + 0(c) as E "0

and there exists a positive constant go such that

X,2(c) ( -go for E E (O,c0J

where X;() is the the second eigenvalue of .

(iii) There exists a positive constant do  independent of E E (0,co] such that

u.(x,E) is monotone decreasing over the interval [-cdovdo].

% Ait

A.
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Proof. First of all, we have to construct our approximate solution U_(x,).

This is achieved exactly in the same way as was done for U(x,e), except for

the following two steps:

1) z., a solution of (2.3), is chosen such that

Zo(- ) = 1, Zo(+m) - 0

2) U.(x,e) = ;o(x)Z(x/e,E) + ;(x)

in which ;_(x) is a smooth cut-off function define by:

;.(x) = 0 , x :[0,1l

tI-;o(X), x e [-1,0]

The remainder of the proof of Corollary 4.5 is identical to that of Theorem

4.3.

Remark 4.6. Theorem 4.3, Corollary 4.5 give not only the existence of

equilibrium solutions of (1.1), (1.2), but also their stability properties.

Theorem 4.7. The equilibrium solutions u (.,E) are asymptotically stable for

c > 0 small if

(4.14) u.(O,E)J'(O) > 0

and unstable if

(4.15) uj:(O()J (0) < 0.

Remark 4.7. In the statement of Theorem 4.3 (i), we could slightly improve

the modulus of approximation iu+(.,e) - U+(.,)2,e by choosing z1(t)

carefully. When zo(t) is chosen so as to satisfy the condition (2.9), the problem

(2.4), (2.6) has a one-parameter family of solutions z,(t) - co(t) + z*(t), where

.%%

,.,..'.'' .''_.,.'" ,,,,."". ". '. "" '+."". '', .', .,-,,,,,,.".,,+,,",.,,+". ",,, ,.. .,."e ". -e: ,,/_e_.' ",...,, ",e', ",- ,,4" I,,g, M a_ , -, AL./ #'
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z*(t) is a unique solution of the problem (2.4), (2.6) normalized so that

Z*(0) =0, i*(0) = 0 hold. We shall show that, by choosing appropriately the

coef ficent c of i 0(t) i n the expression of zj(t), the number To in (4.10)

can be made equal to zero. This, in turn, implies that I U+(-,E) - U(-,E)I 2 ,E=

0(E), in view of the proof of Theorem 4.3. Now, IjizoII2 To is written as

I01 L2 To = C2 1 2/2 + l1c + 1

in which

12 = Jfuu(zO(t),O)iO(t)3dt

11 f 1f~z~)0i()z(t) + fu(z 0 (t),0)tz 0(t)2]d t

and 10 is a constant which does not depend on c. Integrating by parts, one

easily obtains

12 w f fuu(u,0)(-2F(u))du =-2 f f(uO)f(u,0)du = 0
0 0

and

11= J ,f(z0(t),0)[Y~'(t) + fu(zo(t),0)z*,(t) + f,(z0(t),0)t]dt

- J(0)

=-J (0) 0 0.

Therefore, by setting c - 10/J '(0), one can make To 0.

A N
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5. Several transition layers

In this section, we extend our previous results to the cases in which several

transition layers can occur. We consider the problem (1.1), (1.2) under the

assumptions (A-l), (A-2), and (A-3)':

(A-3)'. If J(x) = flf(ux)du, x E [-1,1] as before, then there exist n points

xi  (-1,1), xi < xi 1 , i = 0,1, -. .,n with xo M -1, Xn+ 1 = 1, such that the

following conditions are satisfied:

(i) J(x i) = 0 i - 1,,..-,n

(ii) dJ(x)/dx x.x i o 0, i = i --. ,n
(iii) Jof(s)ds < 0 for u E (0,1), i = l,..,n.

We intend to construct a family of equilibrium solutions of (1.1), (1.2)

which exhibits transition layer phenomena at the points x - x i, i = 1,.- *,n.

Let us begin with constructing approximate solutions. In virtue of the

results in S2, one can find the solutions of the following equations.

(5.1) i + f(zi, ,x) =0

(5.2) z + fu(Zo,,xi) + fx(Z0,:,xi)t - 0

with the boundary conditions

Slimzol.((-)ilt)- 0, limz ,+((-lY+ t) - I

)limzi ((-l)i' t) - 0,1imzO.((-)it) f It.OM , t.."M

(5.4) zi,± are bounded on R

for each i E (1,- .,n). At this stage, zi is not uniquely determined. We

impose the additional condition
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(5.5) J±k1 ")~ (Z ,k(t)Xi)(Z il*(t))2 + f.(i4)X~~'.t

fj f (zo'(,x)t 21dt - 0

which determines zi uniquely for i - 1,..-,n. The significance of the

condtion (5.5) is clarified in Remark 4.7. When (5.5) is satisfied, the order of

the approximate solution is improved. However, even if (5.5) is not satisfied,

the stability analysis below is unchanged.

Let do and Vi, i -0,. .,n be defined by

2d0  min(x, - xi Ii - 0,. - -,n)

1i '(x 1 +1 + xi ), i - 0, 1,-.

We also let Z' (t,c) be defined by

(5.6) Zi(t,c) - zi',t(t) + EZi':(t), i =1..*n

By using the notations defined above and the smooth cutoff functions c+

and ~,our approximations Un,*(x,c) are defined by:

=0 (=I for U n,) for x ez [I-ll

- ; 0((x-xi)/d 0 )Z'((x-xi)/c,E) for x Ez [-X'X 1,. 1

+ ;,((x-i)/d) i 2j + I
+ ~*((x-x1)/do) =0,. . ,fZL

2

(5.7) U n,*(x,e) - ; 0((x-xi)/do)Z' ((x-xi)/E,,E) for x E [x~ 1

+ r;((x-i~)/d 0 ) i =2j, j = 1'.. .,[n /21

= 0 (1 for U n,) for x 6- [ V n 191] if n is even

- 1 (0 for U ,- for x e[-x n1 ,l] if n is odd

The functions U n*:(x,c) will be our approximation to equilibrium solutions

%9
LAM-
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of (1.1), (1.2). Changing variables in (1.1) by: u u + Un,+  the new

function u is subject to the equation

(5.8) au/& ZE,,± u + Gn(e) + Fn(u,g)

and the boundary conditions in (1.2), where

(5.9) rEn,u = (Ut + fu(Un.±(X,E),x)u

(5.10) Gn(c)(x) = E 2 (x + f(Uit(x,E),x)

(5.11) F :(u,e)(x) = f(Un,(x,) + u,x) - f(Un,(x,E),x)

-f u(Un,+(x,E),x)u

Since the main line of argument in the sequel is irrelevant to whether we

choose Un,+  or U n,- as our approximation, we simply denote U n,±, re.n,±,

G and F n by Un'  E,n, G n  and Fn  respectively. However, the stability

property of the equilibirum solutions of (1.1), (1.2) depends on the choice

between Un,+  and U., (see Lemma 5.2, Theorem 5.4).

We first examine some spectral properties of the linear operator r,,n.

Lemma 5.1.

(i) The first n eigenvalues of ZE,n, ) 1() > X2,(E) >- .> X\(E), approach

zero as c tends to 0.

(ii) Let *i(x,E), j - 1,...,n be an eigenfunction of Z,n coresponding to

V, ), then one has:

Oj(x i +ct,F)/Oj (x i ,c) -i 0, (t)/i, ±(0) as c - 0

in C o (A ), for i,j=l,. -,n.

(iii) There exists a positive constant k0 such that

JIj(xi+Et,E)J 4 kolo (xi,()eC-26tI for Itl 4 d/E

-%
. . . h A ~ *. *.
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(iv) The remaining eigenvalues of Z', are bounded away from zero; name!)',

there exists a positive constant go> 0 such that

X (c -go0 for e G (0, e0].

Proof. The proof is an obvious modificaiton of that of Theorem 3.1.

(i) Let e_(x,c,X) be the solutions of (3.4-b)X, in which U is replaced by

ntwith initial data -(1E,~ 0, for X~ C [-132/2,132/2]. It is

sufficent to show that, for any X~ C (0,32 /2], there exists E0o() > 0

such that

for c e (0,E0()X)]. We shall prove (5.12) for the case of n = 2. For

the case in which n 0 3, (5.12) follows from repreated application of

the arguments below. if 60(x,(,X) is the solution of (3.4-b)>, with

initial data 8 0(X2 E,)) - 0, then, the proof of Theorem 3.1 (i) implies

that efiEEX) < e0 (iX2, e, ) - 0 for c e (0,T0OX)j. If e+(x,E,X) is

the solution of (3.4-b)>, with e+(l,E,X) = 0, then, applying the proof

of Theorem 3.1 (i) to eo and 8,one obtains:

60(lEX) < e+(lEX) = 0 for C e-(,OX]

Therefore, for c E- (0,c 0(X)I, with c0 (k) = min (To~k), ?oOX)),

e~,,)< ejl,E,X) < e+(l,E,k) = 0.

On the other hand, if eojx,E,-X) is the solution of (3.4-b)_X with

e0 (i:2 ,(,-X) = 172 then it follows from Theorem 3.1 that n/ = e0( x2 9E,-))

< e6(i 2 E,->) < 77 for f e (0,i0 (>,)]. Denoting by e+(x,iE,-k) the

solution of (3.4-b)>, with e+(l,E,-X) - 77, and applying the arguments of

Theorem 3.1 (i), it follows that e0(l,E,->,) > n~lE-)=i, for e C-
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(0,TO(X)]. Therefore, for E - (0,Eo(X) ] , one obtains

.(l,E,-) > o(lE,-X) > it

where co(X) - min m o(), T0(k)). This completes the proof of part (i)

In vieAw of part (i), part (ii) follows from the proof of Lemma 3.4, and part

(iii) follows from the same type of arguments as the proof of Theorem 3.1 (ii).

The proof of part (iv) is essentially the same as that of Theorem 3.1 (iii).
n-1

In fact, if one defines eO (x,c,X) for x E ( U [xi + Eto, x+ 1 -Eto]) U [-l,x 1 -Eto] U
i=i

[xn+Eto,l] by:

[fU(Un(x,E),x) - X] cos 2 e0 + sin 2e= 0
- 1/2 < O.(x,,X) 4 - 0o

eo 8e+(xE,X) < RI2

for t o

in which, to, -o are chosen in such a way that the condition (3.7) is satisfied.

In order for the value Xn(e) - u to be the (n+l) "th eigenvalue of r,,n it is

necessary that there exists at least one index j E (1,. .,n) for which

and _(xj + etoten(t) - U) > G+(xj + (to ,,n( ) ) -k + .

e.(xj - to ,f,Xn(t) - ) < e_(xj - Eto,tln() - u) + 2k 3t

hold. Now, following the arguments in the proof of Theorem 3.1 (iii), one can

find a positive constant 910 such that

Xn+1 (C) -at, for ( E (0,Eo1.

If we define go - min(to; j - I,. .. ,n), then it follows that X n+1(t) 4 -; 0  for

E (O'Co]. This completes the proof of Lemma 5.1.

In the next lemma, the asymptotic estimates on Xj(E),j=I,- .,n are refined.

Let us define K: by:

Z A.
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(5.13)+ K " - (-1)i ff(U,x )du/ E[(t)] 2dt, i = ,.,n

and

(5.13) K - (-)i+l f.(uxi)du/ [z'(t)]2 dt, i = I,..,n.

Lemma 5.2. Let (K)%_1 be a rearrangement of the sequence {Ki . 1  in such

a way as:

1 2 n

Then, the first n eigenvalues O (c), j -1,.-,n, of ZE,n,* satisfy:

( (e) = EKE + o(E) as e - 0

In order to prove this result, we need another lemma. Let -(),j=l,..

be the first n cigenfunctions of the linear operator £e,n normalized so that

(5.)5.) <?;i(E),fj(E)> - Si jj l .. ,n

where <u,v> iu(x)v(x)dx is the usual scalar product. Because of the

normalization (5.15), vrI -,E)1o, j - 1,-.. ,n, are bounded; hence, by reasoning

as before, Lemma 5.1 (ii) implies:

(5.16) v'r Tj(x i + ct,c) aji ±O(t) in C~o( ) as E -. 0

for j,i= 1,. .,n, where ai, ij= 1,. .,n, are some real constants.

Lemma 5.3. If A : = (ai)n%=. is the n x n-matrix with its entries aij

defined in (5.16), then it follows that:

det A # 0

and, in particular, A is invertible.

Proof. In virtue of (5.16) and Lemma 5.1 (iii),

-
-J
,J
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<T ,jM E I k 1
"" (xC)Tj(x,()dx + Q(e " / CE)

k=1 Xk-dO

nd
E CE e Ti(xk + et,e)"(x k + ete)dt + O(e3/E)
k=1 -do/

n 0/C

= [vE'fi(x k + Ft,E)][''rj(xk + et,E)]dt + O(e'S/e)
k=l J -do/e

- a,,a, Ji C~ ~)d t - E (a ik 11)(ajk I0 I
k=1 - k=

as e -. 0 for ij = 1,.. -,n. In view of the normalization (5.15), one obtains:

n

(5.17) E Nikajk = ij i,ji,. n
k=1

where Nik , a 0lk, l•  The relations in (5.17) mean that the matrix A =(i

is an orthogonal matrix, and hence det A = I. From this, it follows that

n n

det A = (det A) n llik- = n lkll"1 * o.
k=1l- k=1

Proof of Lemma 5.2. Consider the eigenvalue problem

(5.18) 'nu = ku.

The method of Liapunov-Schmidt will be used in order to obtain a system of

n equations which the first n eigenvalues )j(E), j - 1,... ,n, should satisfy.

This system of n equations then will be "diagonalized" by using the matrix

A which is defined above.

If we let ji(x,c) = E' o((X-xi)/do)io,±((x-xi)/E) il,-- -,n, then Supp Oi(e) 0

Supp j(e) is empty for i 0 j, and therefore, ' 1l((),.O.n.,l(()) spans an n-

dimensional subspace in X (and hence in Y). We define a continuous
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projection E n onto [fl(e),..,'fn(E)] by

n

(5.19) Enu = E < k(E),U> k(E) for u e Y.
k=1

The spaces X and Y are decomposed in accordance with En:

(5.20) x
Y - [f (C),..-,. f(E)l'Oy

in which X n  and Yn are the null spaces of En in X and Y,

respectively. These spaces are also decomposed as:

X = [010E),...,,.(()I®SXn

(5.21) Y [it1(c), On(E)]oyn for E - (,o].

This is easily seen by observing that:

[l/l < IIoI] < O ) -' a, as e - for ij=1, -,n

and A = (aij) is invertible. Let En be the projection onto [0 1(c),...,10n(c) ]

along the subspace Yng which is defined by:

n
(5.22) E.u - E ck(u)O,(E) for u e Y

k=1

in which ck(U) is determined by:

n
(5.23) £ A(), 4 )k(e)> Ck(U) < <;i(e),u>, i-l,.

k=1

I'

If we let u = E %Ok + v with a (a,, ) C R and v C Xn, then, in
k=1

terms of decompositions in (5.21), the equation (5.18) is equivalent to:

V.' sq" -~ %'V VVS VV ~' V ~ VV. '
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ra) A(E,X)a~ - 0

(5.24) n
b) [e'n I X n -XlXn]V E UkQk(EX)

k=1

in which A(e,X) is the nxn-matrix given by:

A(c, X)i - c3(ZE,"j(E) - X Oj(E)), i,j=l,.,n

and Qk(e, )'s are given by:

Q,(E,X) - (I - 'n)(ZE,"I() -Z

We can assume that IXi(e)I < go/2 for c e (0,c0], j=1, .. ,n where ILo and

EO are the constants which appeared in Lemma 5.1. Then, [ ' 4n xIXn]  is

invertible uniformly with respect to e - (0,c 0 ] and X E [-go/2, go/2], and

therefore, (5.24) implies that the first cigenvalues Xj(c), j=l,.- ,n of ZE,n are

the roots of the equation:

(5.25) det A(c,A) - 0.

Let us now compute the matrix A(,X) explicitly. By definition, A(,X), =

ci(rnno.(e) - XOj(c)) and hence we shall compute both sides of (5.23) with u

replaced by ZEnO(E)- xO)(E), j - 1,. .,n. In order to avoid complicated

notation, we simply write zl etc., instead of zo',1 etc.

(5.26) Cf4r~n 0.- I j > =- jxeld

= Jxa+do Ti(xE)[Z1,0,1(x,E) - ,x,i)-x ,

(5.(x6)).,

x1-d 0

f* xj-d
o

M ,,,C "- *i(xj + Et,c)( Po(t) + fu(Zj(tE),xj + et)zj(t) - X (t)ldt

r odo/4(

+ O(e-0/2 E )

-'
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n

(5.27) 1: <ilok> Ck(:(.n0. _ -

k=1

= I t fdo/4 Vr 'fi(Xk + EtE)(t)dt + O(e-0/2( ck( 0hj- ))

n n

- E (aik + o(1)}ck(r(n0IJ(() - ~ E (aik + o(l))A(,)Ij.
k= 1 k=1

One should notice that the last term in (5.26) is written as:

tE(- f ij(xj + Et,IE)[fu(Jt,)x j Ut 0
-d01 4(

= ~ ~~~. Eaij J[~((x)z(t)]+
- 0J [(Id t + 0(1).

Equating this expression to the last term in (5.27) and using the fact that A

(a..) is invertible, one obtains:

(5.28) I-A(c,)) - diag (01 EX, ,~E)) ()a

in which

(5.29) [fU(E,)L) - J jzj't~t + f.(4j'(t)x)t[iz'(t) 2d

- (VE)J[±jk(t)]2dt

U ~~~f fx-I) 'i(sx)Ls - VE) 1*(t)]2dt

and jj I if -
m  ,j* - j if ="*This formula is a consequence

*of the computations in the proof of Lemma 3.4. Since the first n eignevalucs

X?(c), j - I,. * ,n, are characterized by: det A(c, (E)) -0, (5.28) (5.29) imply

w L. ..:- -/~-'~
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that there is a one-to-one mapping

p : l - ,n) - { , - ,n)

such that:

Ii* - ()P()+t fX(u,xP(j))du/J [i~j ]dt.

From the definition of i* and (5.13), it follows that

In view of the fact, X)(c) > X >() > . ±(E), this implies:

li ()/E = K, j = I,...,n

completing the proof of Lemma 5.2.

Before stating the main result of this section, we define two subsets 110

and (I, of [-1,1] by:

1= [-l,x) U (X2 ,x3 )U.. .KXn, l] if n is even

- [Il,Xl)U*'* .xnlxn) if n is odd

1 = (x 1 ,x 2)U.. .Lnx.,x) if n is even

- (xlx 2)U..(. qx 2,x.n-l.(xn, l1 if n is odd

Theorem 5.4. Suppose the conditions (A-I), (A-2), and (A-3)' are satisfied. Then

there exist a constant co > 0 and two families of equilibrium solutions un,(x,C)

of (1.1), (1.2) for c e (0,co1 with the following properties:

Fo on~l
(i) li un,+(x,() " compact uniformly

E A on .

V,,.,,L._.,'- '' - '',","."-","-","-"."-"-'- ,", ."-".",".".'.".""'. . . ,.. . . ,''"." '''- '-. ''' ' l¢
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1i un.(x,,) = compact uniformly
f-- 1 o n i l l

and IUn,,(.,() - Un,,(- ,)1 2 ,- o(e) as c 0.

(ii) If ZC n'± : X - Y are defined by.

Z.,n,±V f 2V, + f (UnJ(X,'),X)V

then, the first cigenvalues Xj(e,n,±), j = 1,. .,n, of Z, '.n '  satisfy:

Xj(En,±) =K? + o(E) as e - 0

and there exists a positive constant Mo, independent of e E (0,eo] such that.:

Xn+l(e,n,i) 4 -p0  for c e (0,1o].

(iii) There exists a constant dl, 0 < dl 4 do, such that the functions

Un,±(x,e) are monotonic over the intervals [x, - ed 1, X3 + edl], j = 1,..-,n. More

precisely:

: (-I)J+lu ,:(x,e) > 0 for x e [xj - ed l ,x2 + edl]

j = 1,2,-. -,n.

Proof: The proof is essentially the same as that of Theorem 4.3. We define

Oj(x,c) by: 0,(x,e)= vr ;(x,e), j - 1,.- -,n where j are the j-th eigen-

functions of rcn, j 1,.. ,n, normalized in such a way as in (5.15). According

*to the decompositions in (5.20), the equilibrium solutions of (5.8) and (1.2) must

satisfy:
n

a ) nv + (I - E)Gl(e) + (I - En)Fn( E ajO() + v,E) = 0
(5.30) n n -j=

b) jE ajj(c)O( ) + EnG n ( j ) + EnFn(E ajj(I) + V,() 0
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'

in which u is replaced by E aj(e) + v, aj E , v e X n. The equation

(5.30-a) is uniquely solved in v as a function v - v*(c) of (a,c) in a

neighborhood of (ac) - (0,0) c P x A+. v*(ac,) is continuous in (ct) and

is as smooth in cc as f(u,x) is in u. Moreover,

Iv*(a )12, - o(E 2 + jail) as c, lal - 0.

Substituting v= v*(a,E) in (5.30-b), one obtains the bifurcalion equations:

(5.31) B(ac,) = 0,

where B(aE) = (B1 (a,E),.- ,Bn(a,E)) is defined by

Bj(aE) = a )j(E) + <G() (>

n
+ 1 <F"( E a¢k(E) + V*(a,()1),Oj(')>

for j = 1,--.,n.

We shall show the solvability of (5.31) by computing first few coefficients
pp n

of the Taylor expansion of B(ac,) in a. If we let Bj(cre) = B(o)() + E
% n = l

B0)(c)c + E B(E)iaj + o(1*13) then, employing Lemma 5.1 - (ii), we cani,k=l

easily obtain:

Bf0)(cE) I-. <Gn(,),Oj(,) > + I- <Fn(V*(', ()',E),Oj(C) >

" <Gn(,),O)(E)> + O(E 4)
n

(2 E aj.Tj + 0((2) - o(E2 )

where Tj I fu(0t),)Zjlt)2 + fux(Z01t), x1)tZ8 (t)

+ f f,.(Zo(t),xi)t2]Zo(t)dt

-0 (by virtue of (5.5))

and aj. are the constants defined in (5.16). The same type of computation

N1
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shows
() = () + 0() = Kc + o(c), j = .,n

B()() = 0( 2 ) i 0
n '

Bi2kE) = , aaiak fUU(zo(t),x )[io(t)]Sdt + o(l)

= 0(1) j,i,k = 1,..-,n

in which o(c)/,, o(l) 0 as c -. 0. Therefore, the bifurcation equations

(5.31) read as the following:

o(E2) + 'E :.. + N()oa + o(l)0( a + o(ial 3) = 0

in which N(,) is a certain n x n matrix with zero diagonal entries and
IN(E)I = 0(( 2). Now, applying the implicit function theorem to 2aB(E) = 0,

one obtains the solution of (5.31), aj - a (E), with dj*(,) = o(,E), j = 1,...,n.

The desired families of equilirium solutions of (1.1), (1.2) are given by:

n v.(a.(E,).),
u i:(x"e) - Un,:(x1e) + E (ej=x1)

The rest of the proof is nearly identical to that of Theorem 4.3. This

completes the proof of Theorem 5.4.

Remark 5.5. Theorem 5.4 also implies that the equilibrium solutions un,(.,e)

are hyperbolic and that the index of them, Ind(u,,(.,E)) : - dim W(un,,(.,E)), is

obtained by looking at the signs of K, j = 1,- --,n. Namely,

(5.2) Ind(u n,(' ,E)) - Card (j K > 0)

and from (5.13), it easily follows that:

(5.33) Ind(un,(.,,)) + Ind(u (.,,)) - n.

,, , n,-,(,

-- r kN N111 NINLAI
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6. Generalizations.

In this section, we generalize the results in previous sections for the

following parabolic equation

(6.1) O"/8't - ( 2 (a(x)u')l + f(u,x), x E -11] t ) 0

subjected to the Neumann boundary conditions

(6.2) U'(-I,t) - 0 -= l~)

The functions a and f will satisfy the conditions:

(B-1) a :[-1,1] - A~ is e-function of x

f A x [-1,1] - A~ is aC-function of (u,x)

and there exist two functions hO(x) and hl(x) of class C**, and a

constant a0 > 0 such that

(i) a(x) ), a0,

(ii) f(hj(x),x) - 0, x E[-1] i - 0,1

(iii) h1 (*l) = 0, i = 0,1

(B-2) There exists a positive constant IS such that

fu h1(x),x) 4 -.302, X C [-1,1], i _ 0,1.

*(B-3) If we define J(x) - Iho f(s,x)ds, x C [-1,1] then there exist n points

x (-11) x i < xj+ 1,j - 1,. - *,n - I such that:

(ii) J (x) = 0, j 1, -, n

"U

(iii) Jh(j f(s~x,)ds < 0 for u in the open interval betwecn

h0(xj) and h (x,), j 1 ,. -,n.

-~ - - NA .CK& .' .- K -
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Under the hypotheses (B-I) - (B-3), it is natural to expect that the same

type of results as in Theorem 5.4 will be true for the problem (6.1), (6.2). In

fact, we shall show the following.

Theorem 6.1. Suppose that the conditions (B-1), (B-2) and (B-3) are satisfied. Then,

there exist a constant (o > 0 and two families of equilibrium solutions of (6.1), (6.2),

un,i, for which the statements (i), (ii) and (iii) of Theorem 5.4 are valid, with the

statement (i) replaced by

h(x) on CIO
(i) Ii in u(X, compact uniformly

h (x) on ill

i l(x) on(1
Ii = compact uniformly.
ij A h °(x) on I1

In order to prove this result, we need the following

Theorem 6.2. Under the assumptions (B-I) and (B-2), there exist a constant

(l > 0 and two families of equilibrium solutions wi(x,c), i = 0,1, of (6.1), (6.2),

defined for c C (0,c,] such that.-

(i) Iw(-,E) - hi(-)1 2 - O(C2) as c - 0, i = 0,1

(ii) wj(-,), i - 0,1, c C (0,ci] are asymptotically stable solutions of

(6.1), (6.2).

(iii) The families wi(.,c), i - 0,1, are unique with respect to the

property ." jwi(-,c) - hi(.)I 0 - 0 as e - 0.
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(iv) If we define wi(x,0) = hi(x), i = 0,1, then the functions

wi(x,i), Ewi'(x,E) and e2 w '(x,c), i = 0,1, are C2-functions of

(x,e) on [-1,1] x [0,e].

Since the proof of this theorem is identical for both i = 0 and i = 1,

the subscript i will be suppressed in the sequel.

By the change of variables u = v + h(x) in (6.1), (6.2), the new function

v is subject to the equation

(6.3) av/at = A(e)v + G(E) + F(v)

where A(c) : X - Y, G(e) - Y, F(.) : Y -. Y are given by

A(e)u = e 2(a(x)ve)'+ fu(h(x),x)v

G(E)(x) = c(a(x)h'(x))'.

F(v)(x) = f(h(x) + v(x),x) - fu(h(x),x)v(x).

One should notice that JF(v)lo = O(1v12) as IV o -. 0 since f(h(x),x) .- .

Lemma 6.3. (i) The linear operator A(e) X( - Y is invertible with the inverse

bounded uniformly with respect to c E (0,e ] for some EI > 0, namely, there

exists a constant c ) 0 such that

IIA(,E)-lIIy(,x ( c, for e E (0,e 1J.

(ii) The eigenvalues of A(c) are contained in (--,-2132] for E E (0,EJ].

Proof. Since fu(h(x),x) 4 - 302, the linear analysis in §3 implies the existence

of such a constant c as above. In fact, the equations for the eigenvalue

problem A(c)v = Xv, are given by
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-r[l/a(x). + X - fu(h(x),x)] sin 8 cos 8

Eel = [fu(h(x),x) - X] cos2e + sin 2 0/a(x)

in terms of the polar coordinates (r,O) defined by v = r cos 0, v' = -r sin e.

The equation for the angle e shows that the first eigenvalue of A(e), for C

E [O,E, with cl > 0 small enough, lies in (--, -212], which together with the

self-adjointness of A(c) gives

IIA(E)-' {s(y,Y) 4 1/2132.

The same type of argument as in the proof of Lemma 4.1 completes the proof

of Lemma 6.3.

Proof of Theorem 6.2. The equilibrium solutions of (6.3) are a fixed point of

the operator F(-,E) = Y -' Y, which is defined by

F(v,c) = -A(c)'[G(E) + F(v)].

Since IG(e)Io = 0(2) as e - 0 and IF(v)Io = O(lvlo) as IVlo 0,

Lemma 6.3 implies that there exists a constant c > 0 such that

(6.4) iF(v,,)12. ( c[, 2 + IVlo2, V ,- Y.

IF(v 1,,) - F(v 2,E)12,E 4 c(IV110 + IV210)1V1 - V2 1o.

If we let Y(r) = (v - Y; IvIo 4r), and if we choose E1 > 0, r > 0 so small

that the inequalities

c[ + r 2] < r, and cr <
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hold, then the mapping F(-,c) :Y(r) -Y(r) is a contraction mapping on the

complete metric space Y(r). Theref ore, there exists a unique fixed point

u( .,c) of F( -,c) in Y(r) for each e E (0 c This proves the existence of

the desired family w(x,E) = h(x) + v(x,E) and its uniqueness (part (iii)). Since

v( .,E) is a fixed point of F( .,e), the estimate (6.4) implies [v( .,c) 12,E '

C 1 62  for some c' > 0, and in particular, IV(.,()Io 4 CIE 2 . Therefore, in view

of the proof of Lemma 6.3, part (ii) follows immediately. Parts (i) and (iv)

will be proved by a kind of bootstrap argument. First of all, one should notice

that the function v(x,c) is a smooth function of (x,E) on [-lj] x (0,c 1 ].

Now, the equation for v(x,t) is given by

( 2 (a(x)vl)l + f(h(x) + v,x) - 0.

Differentiating this expression with respect to x, one obtains:

(6.5) A (c)V + p(x,E) - 0

in which p(x,c) = a '(x)c 2 v"(x,i.) + a"(x)e 2 vI(x,) + fu(h(x) + v(x,E),x)h '(x) +

fx(h(x) + v(x,c),x) and V(x,E) - lv(x',E)/ax and A(E)V =E2( a(x)V')' +

f U(w (x, c), x)V. Since Lemma 6.3 also applies to A(c), for c e - by

reducing E1 > 0 if necessary, (6.5) implies

(6.6) 1V1 2,E 4 clP(.,E)Io.

Since Iv(.,C)12 .( = 0(E 2), and fu(h(x),x)h'(x) + fx(h(x),x) =0 imply I P( -I() 12 ,(

cc c 2  it follows from (6.6) that I vI'() 2,E 4 cc 2. Differentiating (6.5) again

with respect to x, one obtains:

(6.7) A(IE)W + Q(x,C) -0

where W(x,c) -v"l(x,c) and jq(.,c)J 0  0(( 2 ). In order to prove

'I%

it
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Iq(.,E)lo = o(e 2) , we use two facts: 1) Iv 12,C, 0(C 2 ).

2) fu(h(x),x)[h '(x)]2 + 2f.(h(x),x)h'(x) + fxx(h(x),x) + fu(h(x),x)h"(x) 0. Hence,

employing Lemma 6.3 again, one obtains

I W(.,,)l 2,C c Iq(,e)l 0  = c1 2

and in particular Iv"(.,,E)o 4 cE. Therefore, Iw(-,e) - h(.)1 2 4 cC2 , which

proves part (i). Part (iv) follows from part (i) and the estimate IW(.,E) 12,C

cc 2 . This completes the proof of Theorem 6.2.

We now proceed to:

Proof of Theorem 6.1. By using the functions wi(x,E), i 0,1 in Theorem 6.2,

let us define:

W(x,E) = wI(x,E) - Wo(X,,E).

We can assume that IW(x,E)l ) M > 0, e E [0,e 1 ] for some positive constant M.

If we change variables in (6.1) by u I-' W(x,E)u + wo(x,e), and multiply the result

by W(x,E), then the new function u is subject to the equation

(6.8) W(x,) 2  8u/1 t = . 2(y(X)u') '  + f(u,x,)

and the boundary conditions in (6.2), where the functions i'(x,c) and f(u,x,E)

are given by:

a(x,e) = a(x)W(x,e)
2

f(U,X,C) - W(x,)[E2(a(x)W'(x,e))' + E2(a(X)W 0(X))

+ f(W(x,E)u + Wo(X,,E),x)].

These functions satisfy the conditions below:

,0a
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a) i'(.,-) = [-I,1] x [0,j 1J - p is C2 in (x,E)

and

Ax -1,11 x [OE 1 l -I I is C W in u and C2 in (x,E).

b) There exists a positive constant E. such that

ff(xE) a, (x,() : [-1,l1 x [0,e]

c) f(i,x,c) E 0, i = 0,1, C C [0,C11.

d) There exists a positive constant 8 such that

fu(i,x,e) ( -3i2, (x,e) [ (-1,1] x (0,E1, i= 0,1.

e) If J'(x) is defined by J(x) f of(s,x,0)ds, then, the conditions for J(x) in

(B-3)' remain satisfied for J(x) and f'F(x,s,O)ds < 0 for u C (0,1).

In fact a) is the consequence of Theorem 6.2 and b), c) and d) follow from

the conditions (B-1) and (B-2) with the fact that wi(x,c), i = 0,1, are

equilibrium solutions of (6.1), (6.2). As for the property e), it suffices to notice:

J(x) = W(x,0) Jf(W(xO)u + wo(x,0), x)du

Sh (x)
f(s,x)ds = J(x).

oW

The conditions a) through e) above are sufficent for the procedures in §2

through §5 to work. Then, transforming back to the original variables by

u J-- [u - w0(x,e)j/W(x,£) one can complete the proof of Theorem 6.1.

Remark 6.4. Theorem 6.2 was previously proved by Fife [1974]. Our proof is

different from his in that we are free from the maximal principle in order to

obtain uniform invertibility of the linear operator A(e).

-I ~~ ~ ... V r.. r 1.....
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Remark 6.5. One cannot apply the procedures up through §5 directly to prove

Theorem 6.1. The difference between the problems in §5 and §6 lies in that

u = 0,1 are equilibrium solutions of (1.1), (1.2), but hi(x), i = 0,1, are not

equilibrium solutions of (6.1), (6.2). Theorem 6.2 plays a role to bridge the gap

between them.

Remark 6.6. Theorem 6.1 could be more generalized. For instance, it still

remains true when hi(x), i 0,1 are defined on the unions of subintervals,
ni

say ni = Iij, i = 0,l, f 0 Un 1 = [-1,1] with any two adjacent subintervals
j=l

I0i and Iij being overlapped.

Remark 6.7. The idea developed in the present paper may prove useful in

order to show the existence of transition layers and their stability for equations

in several space dimensions.

Remark 6.8. The methods presented in Sections 2 - 6 apply to show the

existence of Neumann boundary layers and interior double layers. Specific

feature of these types of solutions is that they are unstable. Boundary layers

turn out to be rather easy to handle because the linearized operator rE

around approximate solutions does not have small eigenvalues approaching zero

as E -0.

,5,.

I,@
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